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ABSTRACT:

The placement of actuators on a wing determines the control effectiveness of the airplane.
One approach to placement maximizes the moments about the pitch, roll, and yaw axes,
while minimizing the coupling. For example, the desired actuators produce a pure roll
moment without at the same time causing much pitch or yaw. For a typical wing, there is
a large set of candidate locations for placing actuators, resulting in a substantially larger
number of combinations to examine in order to find an optimum placement satisfying the
mission requirements and mission constraints. A genetic algorithm has been developed
for finding the best placement for four actuators to produce an uncoupled pitch moment.
The genetic algorithm has been extended to find the minimum number of actuators
required to provide uncoupled pitch, roll, and yaw control. A simplified, untapered,
unswept wing is the model for each application.

INTRODUCTION

Conventional control devices like flaps and ailerons have gaps between the wing and the
control surface that contribute to leakage and protuberance drag. This can be a source of
aerodynamic noise and increased observability. Flow control actuators potentially allow
a seamless aircraft with no moving control surfaces, but rather hundreds of small ports
capable of aerodynamically morphing the shape of the wing as needed. The cost and
complexity of such a vehicle is obviously affected by the number and location of these
ports (Scott et al. 1998).

The placement of the actuators on a wing determines the control effectiveness of the
airplane. For the wings-leveler autopilot suggested by Scott et al, optimal placement
means maximizing the moments about the pitch, roll, and yaw axes while minimizing the
couplings among the moments. For a typical wing, there is a large set of candidate
locations for placing actuators. The larger the set, the larger the possible combinations
to examine in order to find an optimum subset to satisfy the mission requirements and
mission constraints. Once engineering judgement has been used to identify potential
regions for the actuators, a genetic algorithm (GA) is an excellent tool for determining
the optimum placement.

The use of GA's has been instrumental in achieving good solutions to discrete
optimization problems, such as the actuator placement problem, that have not been
satisfactorily solved by other methods (Goldberg 1989). The discrete nature of the
actuator placement problem has been recognized previously, and the GA approach has
been successfully applied to solve the placement problem for interior noise control
(Simpson and Hansen 1996).

The approach in this study differs in that the fitness of a population member is
determined by calling PMARC (Ashby et al. 1988), a low-fidelity aerodynamic code for
modeling complex three-dimensional geometries, to evaluate a multiobjective fitness



function with several constraints. Given the placement of the actuators, the program
returns the values for pitch, roll, and yaw. The model for this project is a simplified,
untapered, unswept wing with 16 potential locations for actuators (Fig. 1).
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Figure 1. Wing model with 16 potential locations for actuators.

The results from this project demonstrate the effectiveness of applying a GA to
optimize the placement of actuators for an aircraft design problem.

THE GENETIC ALGORITHM

This GA uses a direct representation of the order as a coding of a wing with n actuator
locations. Each member of the population consists of a string of numbers where each
position (1 through n) in the string contains a one or a zero, designating whether the
actuator exists or not. For example, the member string [0 1 1010010100101 1]
represents a wing with 16 possible actuator locations with actuators existing at locations
2,3,5,8,10, 13, 15, and 16. An initial population of members is randomly produced and
evaluated. Successive populations are produced by the GA operations of selection,
crossover, and mutation.

The selection operation determines those members of the population that survive to
participate in the production of members of the next population. Selection is based on the
value of the fitness function for the individual members. Members with better fitness
levels tend to survive and are placed in the mating pool. Selection is accomplished by the
tournament approach where two members are randomly selected from the parent pool and
compared according to their fitness; the member with the best fitness is included in the
mating pool.

The fitness of a member is determined by calling PMARC. The input for PMARC
remains constant except for the array containing the actuator placements. The output
from PMARGC, the pitch, roll, and yaw moments, are used in determining the fitness of a
member. Different fitness functions, described in detail below, are used in this project.
PMARC requires about two minutes for the initial call (extra time for setting up some
matrices) and one minute for each subsequent call on a Sun UltraSPARC™ workstation.
PMARC is called to evaluate each member of the population, and there may be many
generations of populations.

The crossover operation is the recombination of traits of the surviving members that
have been placed in the mating pool, in the hope of producing a child with better fitness
levels than its parents. This GA applies the single-point crossover technique as opposed



to the uniform crossover method used by Simpson and Hansen. Single-point crossover
is accomplished by randomly selecting two parent members from the mating pool and
randomly selecting a crossover point. To create members for the next generation
population, each location in the first parent member before and including the crossover
point is copied to the first child, and each location after the crossover point is copied to
the second child. Then the opposite locations from the second parent are copied to each
child.

The mutation operation prevents the search of the design space from becoming too
narrow. After the production of a child population, mutation randomizes small parts of
the resulting members, with a very low probability that any given member location will
be affected. Mutation is accomplished by polling each location in the member. A random
number generator, along with a user-defined mutation parameter (default is .01), is used
to determine if that location is to be mutated. If mutation occurs and there is a one in the
location, it is made a zero, and vice versa.

SINGLE OBJECTIVE APPLICATION

For each application, the wing model was designed with 16 potential locations for
actuators (Fig. 1). The problem statement for the first application of a GA to actuator
placement was, "Given 16 actuator locations, find the best placement for four actuators to
maximize pitch-down with very little or no roll or yaw moments." The population size
for this application was 100. The fitness function maximized the pitch-down. Three
constraints were added to penalize the fitness function by adding a positive number for
each violation.

(1) if the absolute value of the roll is greater than .001, add 1

(2) if the absolute value of the yaw is greater than .001, add 1

(3) if the number of actuators is not equal to 4, add 10

The GA found several configurations that satisfy the constraints (Fig. 2). In the

figure, the shaded locations indicate where actuators need to be placed. The optimum
fitness was -0.078 for a case with four actuators on the top surface of the wing, near the
leading edge (Fig. 2c).

(a) Fitness = -0.041 (b) Fitness = -0.074 (c) Optimum fitness = -0.078
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4 8 12| 16 4 8 12 16 4 8 12| 16

Figure 2. Actuator configurations for pitch-down.

MULTIOBJECTIVE FUNCTION



The problem statement for the second application of a GA to actuator placement is,
"Given 16 actuator locations, find the minimum number of actuators required to provide
uncoupled pitch, roll, and yaw moments." The problem was divided into three distinct
subproblems (one each for uncoupled pitch, uncoupled roll, and uncoupled yaw), each
with a separate population. The fitness function for each subproblem found the minimum
number of actuators required for that particular uncoupled maneuver. The value of the
moment was not a part of the fitness function for this application. There was also a
composite fitness function that found the minimum number of actuators required to
accomplish all three uncoupled maneuvers. There were five possible constraints for each
subproblem and each added a positive number when violated. For example, the
constraints for the pitch subproblem were:

(1) if the absolute value of the roll is greater than .001, add 20

(2) if the absolute value of the yaw is greater than .001, add 20

(3) if the number of actuators is less than some minimum number, add 80

(4) if the PMARC code does not converge, add 80

(5) if the absolute value of the pitch is less than .001, add 20

The penalty of 20 for constraints (1), (2) and (5) was chosen because the maximum
number of actuators that could be applied was 16 and a penalty was needed that made the
fitness more than 16. Constraint (3) was added so that engineers could specify a
minimum number of actuators for safety reasons. (The initial minimum of 4 was later
reduced to 2.) Constraint (4) was added to take advantage of convergence information
from the PMARC convergence parameter. Constraints (3) and (4) were more heavily
penalized than (1) and (2) to move the search away from these members more rapidly.
Constraint (5) was not a part of the initial problem. Initially, the penalties were
cumulative.

The population size for this application was 100 and there were different populations
for pitch, roll, and yaw. The GA iterated through the 100 members of each subproblem,
and evaluated the fitness of each individual member. If the constraints were satisfied, the
strings of the individual members were combined with an "OR" function to form a
composite member. The fitness of the composite member was the sum of the actuators
that would be available for each of the uncoupled maneuvers.

Examining the composite fitness one member at a time proved to be inefficient. For
example, in one pass through the population, the two members selected for pitch and yaw
each had an excellent fitness of 4, however, the one selected for roll had a poor fitness of
10. This resulted in a composite fitness of 16. Another pass found members with the
following fitnesses: pitch = 10, roll =4, yaw = 10, and composite = 18. If the pitch and
yaw strings from the first pass were combined with the roll string from the second pass,
then the composite fitness would be 9. Thus, arrays were added to save members of each
subproblem that do not violate any constraints, and all possible good combinations of
strings from the subproblems can now be evaluated to find the best combination for
composite fitness.

Another problem that occurred in this application was the lack of a test for the
individual moments. Members that had no pitch, roll, and yaw were accepted as valid.
Therefore, constraint (5) was added to each subproblem.

Because absolute values were used in the evaluation, the GA could find pitchup or
pitch-down, roll left or roll right, and yaw left or yaw right. In this application, the GA



found pitchup (Fig. 3a), roll left (Fig. 3b), and yaw right (Fig. 3c). The results in Figure 3
were obtained after 18 generations. The composite configuration placed actuators at
locations 4, 6-11, 13, and 16.

(a) Pitch = 0.05 (b) Roll =0.12 (c) Yaw = 0.02
1 5 9 13 1 5 9 13 1 5 9 13
10 | 14 2 6 10] 14 2 6 10| 14
11| 15 3 7 11| 15 3 7 111 15
4 8 12 | 16 4 8 12| 16 4 8 12| 16

Figure 3. Four-actuator placement with uncoupled moments.

These results were then shown to engineers from NASA Langley's Dynamics and
Controls Branch. Their suggestion to relax constraint (3) to allow a minimum of two
actuators per subproblem was incorporated into the program. In addition, the penalties
were no longer cumulative, as that seemed to slow down the convergence process. In this
application, the GA found pitchup (Fig. 4a), roll right (Fig. 4b), and yaw right (Fig. 4c).
The results, obtained after 13 generations, from these changes are shown in Figure 5.
The composite configuration placed actuators at locations 3, 4, 13, 14, and 16.

(a) Pitch = 0.01 (b) Roll = -.016 (c) Yaw = 0.02
1 5 9 13 1 5 9 13 1 5 9 13
10 ( 14 2 6 10] 14 2 6 10| 14
11| 15 3 7 1] 15 3 7 111 15
4 8 12 | 16 4 8 121 16 4 8 121 16

Figure 4. Two-actuator placement with uncoupled moments.

The wing model is symmetric, so this information can be used to determine a
composite configuration for all six uncoupled maneuvers for both the four- and two-
actuator placement configurations (Figs. 5a and 5b, respectively). Future applications will
use the same model, but will increase in complexity, with additional locations for
potential actuators as well as the examination of coupled maneuvers.



( a) Four-Actuator Composite ('b) Two-Actuator Composite

1 5 9 13 1 5 9 13
2 6 10 14 2 6 10 14
3 7 11 15 3 7 11 15
4 8 12 16 4 8 12 16

Figure 5. Symmetric composite for four- and two-actuator placement configurations.
CONCLUSIONS

A genetic algorithm has been successfully applied to the placement of actuators for a
simplified, untapered, unswept wing. This wing model has 16 potential locations for
actuators. A low-fidelity aerodynamic code is used to determine the fitness of each
member of the population. The first application contains a single objective function
which finds the best placement for four actuators to maximize pitch-down with three
constraints. The second application uses the same wing model, but contains a
multiobjective function which finds the minimum number of actuators required to
provide uncoupled pitch, roll, and yaw control. The problem is divided into three distinct
subproblems, each with its own population, fitness function, and constraints. A
composite fitness function finds the minimum number of actuators required to
accomplish all three uncoupled maneuvers. In this application, the genetic algorithm
finds the optimum placement for a minimum of four (then two) actuators in each
subproblem for the three uncoupled maneuvers. Wing symmetry is used to determine a
composite configuration for all six uncoupled maneuvers.
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